Gradient Descent With Nesterov Momentum From Scratch

Gradient descent is an optimization algorithm that follows the negative gradient of an objective function in order to locate the minimum of the function. A limitation of gradient descent is that it can get stuck in flat areas or bounce around if the objective function returns noisy gradients. Momentum is an approach that accelerates the […]

The post Gradient Descent With Nesterov Momentum From Scratch appeared first on Machine Learning Mastery.

Comments